Finden Sie schnell plasma beschichtung für Ihr Unternehmen: 200 Ergebnisse

PULVER BESCHICHTUNG

PULVER BESCHICHTUNG

Objekte bis zu 6500 mm Länge, 1000 mm Breite und 2500 mm Höhe. Sie können aus drei Glanzgraden (matt, seidenglänzend oder glänzend) und Hunderten verschiedener Farben wählen. WAS KANN BESCHICHTET WERDEN? Stahl (blank für den Innenbereich, feuerverzinkt, galvanisch verzinkt) Aluminium (roh, eloxiert) Aluminium- & Stahlgussteile Messing Edelstahl Balkone Gartenzäune Geländer Spenglerartikel/Maschinenbauteile Türgriffe Beschläge uvm.
Hochtemperaturspritzen  spezialisiertes Verfahren zur Herstellung von Kunststoffteilen,

Hochtemperaturspritzen spezialisiertes Verfahren zur Herstellung von Kunststoffteilen,

Hochtemperaturspritzen ist ein spezialisiertes Verfahren zur Herstellung von Kunststoffteilen, die extremen Temperaturen standhalten müssen. Bei Lechner Kunststofftechnik haben wir uns auf das Hochtemperaturspritzen spezialisiert, um Produkte zu entwickeln, die den anspruchsvollsten Anforderungen gerecht werden. Unser erfahrenes Team nutzt modernste Technologien, um sicherzustellen, dass jedes Teil den höchsten Qualitätsstandards entspricht. Dieses Verfahren ermöglicht die Herstellung von Teilen aus Hochleistungskunststoffen wie PEEK, die in Branchen wie der Luft- und Raumfahrt, Automobilindustrie und Medizintechnik weit verbreitet sind. Unsere Kunden profitieren von der hohen Qualität und Zuverlässigkeit unserer Hochtemperaturteile, die durch eine ständige Kontrolle und Dokumentation nach DIN ISO 9001:2015 gewährleistet wird. Mit unserem Fokus auf Innovation und Exzellenz sind wir der bevorzugte Partner für Unternehmen, die auf der Suche nach hochwertigen Hochtemperaturteilen sind.
Anwendungsbereiche der Beschichtungen

Anwendungsbereiche der Beschichtungen

Die Beschichtungen von PVT eignen sich hervorragend für folgende Einsatzgebiete: Verschleißschutz Erosionsschutz Reibungsminderung Das Informationszeitalter, das mittlerweile sowohl im Kleinen unser alltägliches Leben als auch im Großen die globalen Gesellschaften und Handelsströme bestimmt, basiert zu einem großen Teil auf der Dünnschichttechnologie. Diese Technologie ermöglicht durch das Abscheiden von Materialien mit Schichtdicken in der Größenordnung von wenigen µm oder darunter u.a. die Herstellung von Halbleiterelementen. Diese finden als Schaltungen, Speicher oder Displays z.B. in unseren Computern oder Smartphones Anwendung oder produzieren beispielsweise als Solarzellen Energie. Ein anderer Anwendungsbereich der Dünnschichttechnik ist die Erzeugung von Hartstoff- und tribologischen Schichten zur Oberflächenveredelung, zum Verschleißschutz oder zur Reibungsminderung. Anwendungsbeispiele Hartstoffbeschichtungen mit höchster Härte zur signifikanten Erhöhung von Standzeiten von (Mikro-) Werkzeugen für schneidende und zerspanende Bearbeitung, Formen und Pressen. Erosionsbeständige Beschichtungen zum Einsatz unter härtesten Bedingungen. Derartige Beschichtungen können beispielsweise die Lebensdauer von Flugzeug-Turbinenblättern erhöhen, die während dem Betrieb starker Erosion durch das Einsaugen von Staub oder Eiskristallen unterliegen können. Tribologische Schichten mit geringen Reibungskoeffizienten können z.B. zur Reibungsminderung im Inneren von Wälzlagern eingesetzt werden. Dadurch wird gleichzeitig der Verschleiß vermindert und die Lebensdauer der Lager erhöht. Bio-kompatible Beschichtungen können eingesetzt werden, um die Standzeit von medizinischen Prothesen zu verlängern und das Einwachsverhalten zu optimieren. Elektrisch leitende bzw. elektrisch nicht-leitende Beschichtungen ermöglichen, die Leitfähigkeit bzw. Isolation von elektrischen Bauteilen zu erhöhen.
Plasma CAT1000 1-4 Kanal, Oberflächenvorbehandlung, Plasmabeschichtung

Plasma CAT1000 1-4 Kanal, Oberflächenvorbehandlung, Plasmabeschichtung

Das potenzialfreie Plasma wird bei der CAT-Technologie durch zwei Lichtbögen generiert, wobei der Gegenlichtbogen gleichzeitig als Gegenelektrode fungiert. Durch diese Methode wird der Einfluss des Verschleißes auf die Plasmabildung minimiert. Ob Einzeldüse für Behandlungsbreiten von 20 - 40 mm pro Kopf oder mehrere Düsen nebeneinander für breitere Anwendungen - für jede energieintensive Vorbehandlung kann mit dieser leistungsstarken Technologie eine Lösung geschaffen werden. Ein Generator versorgt maximal 2 Düsenköpfe. Auch hier können spezielle funktionelle Gruppen an der Polymeroberfläche durch unterschiedliche Prozessgase eingebracht werden.
Puls-Plasma-Nitrieren und PVD-Beschichtung mittels Lichtbogenverdampfung

Puls-Plasma-Nitrieren und PVD-Beschichtung mittels Lichtbogenverdampfung

– die Kombination dieser Prozesse erzeugt ein hartes nitriertes Grundmaterial und eine Hartstoffbeschichtung auf der Oberfläche. Dies kann die Lebensdauer von Komponenten und Formwerkzeugen signifikant erhöhen. Beim Puls-Plasma-Nitrieren wird über eine separate Anode ein Plasma generiert, welches hochenergetische Stickstoff-Ionen erzeugt. Diese können bis zu einer Tiefe von 100 μm ins Grundmaterial des Beschichtungsgutes eindringen und sich dort einlagern.
Die effektive und moderne Beschichtung der Zukunft

Die effektive und moderne Beschichtung der Zukunft

Unsere höchst effektiven Polymer-Beschichtungen werden in vielen verschiedenen Branchen eingesetzt. Das Parylene Coating lässt sich vielseitig anwenden und wir erarbeiten kundenorientierte Lösungen für detailreiche und individuelle Anfragen. Wir beraten Sie gerne.
POWER PULSE-Hochspannungs-Pulsgleichrichter für molekulare Präzision bei plasmachemischen Beschichtungen

POWER PULSE-Hochspannungs-Pulsgleichrichter für molekulare Präzision bei plasmachemischen Beschichtungen

Plasmachemische Beschichtungen sind unter verschiedenen Bezeichnungen international bekannt. Sie werden als elektrokeramische Beschichtung, Plasma-Chemische Oxidation (PCO®), Plasma-Elektrolytische Oxidation (PEO) oder Micro Arc Oxidation (MAO) bezeichnet. Mithilfe plasmachemischer Beschichtungen können sehr präzise und belastbare keramikartige Schichten auf Leichtmetallen hergestellt werden. Sie schützen das Trägermaterial äußerst zuverlässig vor Korrosion und Verschleiß – vor allem in hochkorrosiven Bereichen und bei hoher mechanischer Belastung. Ebenso überzeugen sie durch eine ausgezeichnete Chemikalien- und Temperaturbeständigkeit bei extremer Abriebfestigkeit.
Beschichten / beschichtete Teile / Plasmaspritzen & Flammspritzen

Beschichten / beschichtete Teile / Plasmaspritzen & Flammspritzen

Thermisches Beschichtungsverfahren zur Beschichtung von stark beanspruchten Oberflächen mit einer umfassenden Auswahl an verschleißfesten Werkstoffen. Plasmaspritzen Beim Plasmaspritzen wird der pulverförmige Spritzzusatz außerhalb der Spritzpistole durch einen Plasmastrahl geschmolzen und auf die Werkstückoberfläche geschleudert. Die hohe Plasmatemperatur erlaubt insbesondere die Auftragung von hochschmelzenden Werkstoff en. Das Verfahren wird in normaler Atmosphäre angewendet. • Qualitativ hochwertige und dichte Beschichtungen • Ideal für hochschmelzende Materialien Flammspritzen Hier wird der pulverförmige Spritzzusatz in einer Acetylen Sauerstoff -Flamme an- bzw. aufgeschmolzen und mit Hilfe der expandierenden Verbrennungsgase auf die vorbereitete Werkstückoberfläche geschleudert. Durch einen weiteren Verfahrensschritt, das anschließende Einschmelzen, kann bei einer Anzahl von Werkstoff en die Haftung erheblich gesteigert werden. • Universeller Einsatz • Geringe Kosten • Eingeschmolzen: sehr gute Haftung; gas-, flüssigkeitsdicht
Duplexbehandlung = Plasmanitrieren + PVD-Schichtsystem in einem Prozess

Duplexbehandlung = Plasmanitrieren + PVD-Schichtsystem in einem Prozess

Duplexbehandlung nennen wir die Kombination eines thermochemischen Plasmanitrierprozesses mit der nachfolgenden Abscheidung einer eifeler-PVD-Schicht in einem ununterbrochenen Anlagenprozess. Dadurch wird die Oberflächenhärte des Werkzeugwerkstoffes definiert erhöht, was wesentlich zur Leistungssteigerung der PVD-Schicht beiträgt. Deswegen entwickelten wir einen für diese Vorgehensweise geeigneten Nitrierprozess und applizierten diesen auf eine Alpha 900-Beschichtungsanlage, wo er dem Beschichtungsprozess vorgeschaltet ist. Grundsätzlich sind alle beschichtungs- und nitrierfähigen Stahlwerkstoffe für diesen Prozess geeignet. Ein Anwendungsschwerpunkt, für den diese Vorgehensweise derzeit regelmäßig und erfolgreich gewählt wird, sind Werkzeuge für die Umformung hochfester Blechwerkstoffe. Kombiniert wird hierbei mit den Schichtsystemen VARIANTIC oder TiCN. Kombinationen mit anderen Schichtsystemen sind auch möglich. Zur Beratung in konkreten Aufgabenstellungen stehen Ihnen unsere Anwendungsberater gerne zur Verfügung. Daraus ergeben sich für Sie folgende Vorteile: Idealer Aufbau eines Härtegradienten vom zähharten Werkzeugkern über eine höhere Stützhärte im Randbereich zur extrem harten und verschleißfesten Werkzeugoberfläche. Daraus resultiert eine erheblich erhöhte Stützwirkung für die extrem harte und verspannte keramische Verschleißschutzschicht. Die Aufnahmefähigkeit für Druckbelastungen steigt deutlich an!
Plasma T-SPOT 1-4 Kanal, Plasmabeschichtung, Oberflächenvorbehandlung

Plasma T-SPOT 1-4 Kanal, Plasmabeschichtung, Oberflächenvorbehandlung

Die Entladung beim T-SPOT wird in klassischer Bauweise zwischen einer zentrisch angeordneten Elektrode und der als Gegenelektrode dienenden Düse gezündet. Durch die Kombination der Düsengeometrie und dem sich räumlich in der Düse ausbildenden elektrischen Strom entstehen zwei Bereiche der Plasmaentladung: Das Primärplasma mit Stromfäden, welche bis zur Düsenöffnung herausragen, sowie das Sekundärplasma ohne Stromfäden (wie auf den oben dargestellten Fotos erkennbar). Der Plasma T-SPOT ist eine langlebige und servicefreundliche Standardlösung. Leistung: 250 - 500 W, regelbar
Leiterplattenreinigungsanlage

Leiterplattenreinigungsanlage

Die Leiterplattenreinigungsanlage ist ein entscheidendes Element in der Elektronikfertigung, das sicherstellt, dass alle Leiterplatten frei von Verunreinigungen und Rückständen sind. Bei GCD Electronic GmbH setzen wir modernste Reinigungsanlagen ein, um die Qualität und Zuverlässigkeit unserer Produkte zu gewährleisten. Diese Anlagen bieten eine gründliche und effiziente Reinigung, die die Lebensdauer und Leistung der Leiterplatten verbessert. Unsere Kunden profitieren von der hohen Qualität der Reinigung, die durch den Einsatz von Leiterplattenreinigungsanlagen erreicht wird. Diese Technologie ist besonders wichtig für die Herstellung von empfindlichen elektronischen Geräten, da sie das Risiko von Fehlfunktionen und Ausfällen minimiert. Durch den Einsatz von Leiterplattenreinigungsanlagen können wir sicherstellen, dass unsere Produkte den höchsten Qualitätsstandards entsprechen und die Erwartungen unserer Kunden erfüllen.
Plasmadüsen und Generatoren als Haupt-Anlagenkomponenten

Plasmadüsen und Generatoren als Haupt-Anlagenkomponenten

Die auf das Material gerichteten Plasmadüsen dienen der Erzeugung und Ausbreitung des Plasmas Das Plasma wird innerhalb der Düse durch Hochspannung zwischen einem Stator und einem Rotor erzeugt und mittels Arbeitsgas über den Düsenkopf ausgeblasen. Die in der Openair® - Plasmatechnik eingesetzten Generatoren erzeugen hohe Impulsspannungen von kurzer Einschaltdauer und positiver sowie negativer Polarität. Damit sind sie optimal zur Ansteuerung atmosphärischer Plasmasysteme geeignet.
PHW100-P

PHW100-P

Beschreibung Kleiner wassergekühlter und somit leistungsfähiger 100 A Plasmapulverschweißbrenner sowohl zum (PTA/PPAW) Plasmaverbindungsschweißen als auch zum Plasmaauftragsschweißen. Absolut sichere Zündung ohne Werkstückberührung mittels Hochfrequenz und Hilfslichtbogen. Ausführungen - Maschinenschweißbrenner mit Rundgriff und Indexbohrung für Roboteranwendungen - Handschweißbrenner mit Rundgriff - Handschweißbrenner mit ergonomischem Handgriff, Taster und Potentiometer zum feinfühligen Variieren des Schweißstromes oder der Pulvermenge während des Schweißens Vorteile PTA - Spritzerfreie und glatte Nahtoberflächen - Ausgezeichnete Spaltüberbrückbarkeit - Minimaler Werkstückverzug infolge geringerer Streckenenergie - 2- bis 5-fache Schweißgeschwindigkeit gegenüber WIG - Keinerlei Einschränkung beim Anstellen des Brenners, da eine externe Kaltdrahtzufuhr entfällt - Hohe Flexibilität, da mit nur einem Pulvertyp (ähnlich 1.4401) die meisten schweißbaren Stähle zu verbinden sind Highlights - Einfacher Aufbau der Verschleißteile - Hohe Standzeit von Brenner und Verschleißteilen - Hohe Flexibilität, da mit nur einem Pulvertyp (ähnlich 1.4401) alle schweißbaren Stähle zu verbinden sind - Geringer Pulververbrauch - Exakt dosierbar - Ausgezeichnete Spaltüberbrückbarkeit - Auch als Maschinenbrenner mit Rundgriff verfügbar
Plasma-Beschichtung und PVD-Beschichtung

Plasma-Beschichtung und PVD-Beschichtung

Hydrophobe / hydrophile Schichten. Gleitschichten. Anti-Kratz-Beschichtungen. Anti-Fog-Beschichtungen. Dekorschichten wie z.B. Metallisierung. Durch Zuführung von Monomeren in den Plasmaprozess können Beschichtungen mit unterschiedichen Eigenschaften erzielt werden. Beim PVD-Verfahren werden aus der Oberfläche eines Targets Atome ausgelöst, die sich auf die Oberflächen eines Bauteils anlagern. Mit diesem Verfahren können z.B Oberflächen in Chromdesign erzeugt werden.
Zugeschnitten auf Ihre Anwendung bieten wir Ihnen folgende AlTi-basierte Beschichtungen an

Zugeschnitten auf Ihre Anwendung bieten wir Ihnen folgende AlTi-basierte Beschichtungen an

Härte max. Einsatztemperatur Farbe AlTiN schwarzblau AlTiN schwarzblau TiNAl grauviolett (*) Nanohärte, Abweichungen +/- 3 GPa Kundenspezifische AlTiN-Beschichtungen sind auf Anfrage möglich.
-dotierte Beschichtung an

-dotierte Beschichtung an

Härte max. Einsatztemperatur Farbe > 1.100 dunkelkupfer (*) Nanohärte, Abweichungen +/- 3 GPa Kundenspezifische Si -Beschichtungen sind auf Anfrage möglich.
InoCoat - Plasmabeschichtung

InoCoat - Plasmabeschichtung

Der InoCoat Plasmakopf von der Variante 3 (IC3) ist ein für Beschichtungen optimierter Plasmakopf. Durch die spezielle Erzeugung des Plasmas und die Zuführung von Pulver oder Precursor werden Schichten auch auf temperatursensible Substrate abgeschieden.
Zugeschnitten auf Ihre Anwendung bieten wir Ihnen folgende CrN-basierte Beschichtung an

Zugeschnitten auf Ihre Anwendung bieten wir Ihnen folgende CrN-basierte Beschichtung an

Härte max. Einsatztemperatur Farbe silbergrau (*) Nanohärte, Abweichungen +/- 3 GPa Kundenspezifische CrN-Beschichtungen sind auf Anfrage möglich.
Plasmaanlagen

Plasmaanlagen

komplette Systeme für die Behandlung von und Beschichtung auf Oberflächen mittels Plasmaprozessen Aktivierung, Reinigung und Ätzen mit Atmosphärendruckplasma, Reaktivem Ionenätzen (RIE) und Mikrowellen Downstream Plasma
Beschichten (Plasma)

Beschichten (Plasma)

Aufbringen einer Schicht durch Niederschlag eines zuvor verdampften Materials auf ein Werkstück unter Plasmaeinwirkung.